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ABSTRACT

A one-dimensional (1-D) approach to the problem of adaptive image res-
toration is presented. In this approach, we use a cascade of four 1-D adaptive
filters oriented in the four major correlation directions of the image, with each
filter treating the image as a 1-D signal. The objective of this 1-D approach is to
improve the performance of the more general two-dimensional (2-D) approach.
This differs considerably from previous 1-D approaches, the objectives of which
have typically been to approximate a more general 2-D approach for computa-
tional reasons and not to improve its performance. The main advantage of this
new 1-D approach is its capability to preserve edges in the image while remov-
ing noise in all regions of the image, including the edge regions. To illustrate
this point, the approach is applied to existing 2-D image restoration algorithms.
Experimental results with images degraded by additive white noise at various
SNRs (signal to noise ratios) are presented. Further examples illustrate the
application of 1-D restoration techniques based on this approach to images
degraded by blurring and additive white noise and images degraded by multipli-
cative noise. Another example shows its usefulness in the reduction of quanti-
zation noise in pulse code modulation image coding. C
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CHAPTER 1
INTRODUCTION

L1 Introduction

Image restoration is the reconstruction of a degraded image towards
the original object by the reduction or removal of the degradations. These
degradations may be introduced during the formation, transmission and recep-
tion of the image. For example, an out-of-focus camera, or the relative motion
between the camera and the object, blurs the recorded picture; an image sensor
circuit or a transmission channel may introduce random noise to the picture;
an aerial photograph may suffer from distortion due to air turbulence. Because
of the recent advances in computer technology, digital image restoration has
received considerable attention for a large lnumber of applications, such as

astronomy, remote sensing, medical imagery, and aerial reconnaissance.

In this thesis, the primary concern is the reduction of noise in the
observed image. The noise reduction system is useful for images which suffer
from little or no blurring. It is also useful for a class of restoration techniques
where the blurred and noisy image is processed by a noise reduction system
prior to the deblurring process. Sufficient noise reduction would improve the

performance of the deblurring process.

The performance of an image restoration system depends on the accu-
racy of the model adopted for the image. Better performance can be expected
if a more accurate model is used. However, to accurately model an image is a

difficult task, because an image is generally neither periodic nor stationary, and
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its formation cannot be characterized by a simple parametric model. As a

result, a model that accurately describes an image is likely to be very complex.

Even if an accurate model could be found, difficulties could arise in the estima-

tion of the model parameters and implementation of the restoration system.

Due to these difficulties, a compromise is often made between a simpler model

and the performance of the restoration system.

In designing an image restoration system, we must also consider the
criterion that is used to judge the performance of the system. In many applica-
tions, the restored images are to be viewed by human observers. Therefore, the
image restoration system should be compatible with the human visual system in
some optimum way. This is, however, a difficult task, because of the limited
understanding of the complex human vision system. Although one may define
a measurable objective criterion such as the minimization of the mean square
error between the original and processed ima.ges, it should not be taken as an
absolute criterion. For example, a blurred picture may have a small mean
square error, but it may not be acceptable to human viewers. On ther other
hand, a more subjective criterion, such as the preservation of details in the pic-
ture, may be more suitable for the human viewers. However, such a criterion

may not be easily incorporated in the optimization process.

Numerous mathematically optimal image restoration techniques have
been proposed [12]. The earlier techniques are mostly linear methods, due to
their simplicity in analysis and computations. Based on the assumption that the
signal and noise processes are statistically stationary, these linear methods
result in space invariant filters designed by using some average characteristics

of the signal. Specifically, for a noise reduction system, these filters are some
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form of a low pass filter which removes noise components at high spatial fre-
| quencies. Unfortunately, low pass filters also suppress the high frequency com-
poneants of the image, which convey important information about the edges and
fine details of the objects in the image. The result is an undesirable blurring of

< the image.
The stationarity assumption used in these linear techniques is generally

invalid in real images. For example, the correlation between adjacent picture

-
elements (pixels) in one part of a picture with a lot of spatial activities is
significantly different from the correlation in another part which is relatively

. flat. A low pass filter, based on the signal characteristics in the flat areas, will

perform well in the flat areas but will blur the details in the edge areas.

Many adaptive systems have been proposed to overcome this difficuity.
In these systems, a nonstationary model is assumed, and the model parameters
are updated with the changes in image properties. The restoration filter is then
adapted to the varying model parameters. In general, adaptation could be
made continuously from pixel to pixel. However, this would require a large
amount of computations. In order to reduce computations, the adaptation
model has to be kept simple. An alternative approach is to partition the image
into regions or subimages. Within each region or subimage, a locally stationary
model is assumed, and a filter is designed with the parameters estimated for
that region. Although adaptive systems are computationally more expensive in
both design and implementation, they perform significantly better than non-

adaptive methods.

Images are two-dimensional (2-D) signals. Consequently, most image

restoration systems are 2-D processes. Images may also be treated as one- ]
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-16 - ® 4
dimensional (1-D) signals, so that 1-D signal processing techniques may be

applied. A simple way to characterize an image is to consider it as a collection -

Y T .-f-fj
L '.' P R I |

of 1-D signals, e g., the output of a raster scanner [3], or a sequence of rows or E

columns [4]). 1-D stochastic models can then be applied, and result in 1-D res-

toration of the scanner output or the individual rows or columns. This has a " p

disadvantage in that some image correlation information is lost in the conver-

PSP OCE W I BRI )

sion from the 2-D domain to the 1-D domain.

1-D filters are sometimes used to approximate a 2-D filter. In an adap- o 11
tive image restoration system, a 2-D filter is generally obtained at each pixel or *
subimage, using the local image characteristics in the surrounding region. Since o]
the filter has to be determined at every pixel or subimage, adaptive systems are ’ ]
computationally expensive. In order to reduce computation, the 2-D filter is _
sometimes designed or implemented by several 1-D filters as an approximation "4
to the 2-D filter. This approach generally givles suboptimal performance com- .
pared with the original 2-D filter. K
o
i

1.2 Scope of the Thesis
Many adaptive image restoration systems apply a 2-D spatially variant 0_44

filter to the degraded image. The filter is typically determined from a small |
local region of the image based on some simple mathematical criterion such as
the mean square error minimization. Within the local region, the image is usu- ’ 1

ally assumed to be a sample of a stationary random process so that methods,

such as Wiener filtering, can be used to determine the filter coefficients. A - ;
major problem of this approach often occurs in edge regions where the signal ' :
E

'
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cannot be adequately modeled, even locally, as a sample of a stationary random :
process, and a filter determined with this assumption may not be able to both . -
preserve edges and reduce noise at the same time. ‘

In this thesis, a new 1-D approach to adaptive image restoration is pro- -
posed which aims to achieve better noise reduction near edges while preserving . i
g the edges. The objective of this approach is to improve the performance of the ; :
E more general 2-D approach. This differs considerably from previous 1-D ) i
%‘ ¢ approaches, the objectives of which have typically been to approximate a more .
general 2-D approach for computational reasons and not to improve its perfor-
mance. More specifically, restoration systems developed based on this 1-D )
approach remove noise more effectively than their 2-D counterparts, without *.
compromising the resolution of the image.
In this approach, four 1-D adaptive filters oriented in the four major .’
correlation directions of the image are applied sequentially to the image. Each ’
of the four filters is designed based on the same image model and basic princi-
ple used in the development of a 2-D adaptive image restoration system. Thus, .
the noiss at an edge is removed by one of the 1-D filters oriented approxi- 1
mately in the same direction as the edge. Since each filter is adaptive and edge
preserving, sequential application of the four filters does not blur the edge. ;1!
The usefulness and limitation of this approach will be studied by appli- R
cation to existing 2-D image restoration methods for images degraded by addi-
tive white noise. Although the approach is developed primarily for the reduc- ® -
tion of noise in images, its performance in a noise-reduction-deblurring restora- 1
tion system will be studied. Other examples that are studied as a part of this ' ",‘J
thesis are: a) images degraded by multiplicative noise, and b) quantization noise *
e,
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reduction in a low bit rate image coding system.

A A A
PR UL AL LY

In summary, this thesis proposes a new 1-D approach to adaptive image .

restoration, discusses its implementation and evaluates its performance.

L3 Organization of Chapters N
This thesis is organized in six chapters.

In Chapter 2, examples of the common image restoration techniques
are reviewed to illustrate the general principle as well as the limitations of
nonadaptive and adaptive approaches to image restoration. Some restoration ]

systems using 1-D approximations to 2-D restoration will also be studied.

Based on the discussion in Chapter 2, a new 1-D image restoration
approach is developed in Chapter 3 for images degraded by additive noise. The .

motivation and practical aspects of the approach are discussed.

In Chapter 4, the 1-D approach developed in Chapter 3 is applied to
three existing 2-D adaptive systems to illustrate its usefulness and limitations. g

The first system is a simple algorithm based on local statistics of the image [5]. ;

In the original 2-D method, edges are modeled by higher signal variances, while
the orientation of the edge is not taken into account in the model. This resulits
in insufficient noise removal near edges. Using the new 1-D approach, the
modified system improves the performance by reducing the noise near edges. In
the second example, an adaptive filter is designed based on the lower sensitivity

of the human visual system to noise near edges [6]. Similar improvement to this

filter can be achieved with the new 1-D approach. The third system is a short
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space spectral subtraction technique implemented in the frequency domain [7].
In the 2-D method, the spectrum of the original image is estimated by subtract-
ing the noise spectrum from the observed image spectrum. The 1-D implemen-

tation of the technique illustrates a limitation of the 1-D approach.

In Chapter S, three further applications of the 1-D approach are shown.
The first application is the restoration of images degraded by blurring as well
as additive noise. Following an approach in [7], the degraded image is processed
by a 1-D noise reduction technique developed in Chapter 4, before it is
deblurred by inverse filtering. The noise reduction avoids the instability prob-
lem often associated with inverse filtering. The second application demonstrates
the effectiveness of the 1-D technique in the density (log intensity) domain to
restore images corrupted by multiplicative noise. In the third application, the
1-D method is used as a post-processor for a particular bit rate reduction
scheme known as the Roberts’ pseudonoise .mcthod [9). In this scheme, the
signal-dependent quantization noise associated with low bit rate quantization is
converted to less objectionable signal-independent random noise. The 1-D
method improves the appearance of the image by reducing the amount of ran-

dom noise.

In the final chapter, a summary of results is given along with sugges-

tions for future research using the 1-D approach.
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CHAPTER 2
REVIEW OF IMAGE RESTORATION

2.1 Introduction

Numerous methods have been proposed to solve the problem of image
restoration. Some are ad-hoc; others are solutions to some optimization prob-
lems. There are various ways to categorize these techniques, according to the
assumptions made about the image, the restoration criterion, and their imple-
mentation. For the purpose of this thesis, they will be classified as either nona-
daptive or adaptive. The major difference between these two categories lies in
the assumptions made about the image model: a stationary model generally
leads to nonadaptive techniques, and a nonstationary model leads to adaptive

techniques.

Some examples of both nonadaptive and adaptive image restoration
will be reviewed to illustrate the general assumptions, principles and limitations
of the two approaches. Although adaptive processing generally performs better
than nonadaptive processing, it incurs heavy computational loads. Sometimes,
the computational loads may be reduced by using 1-D approximations to the 2-
D adaptive approach. The general principle of these approximations will be stu-

died.

N
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22 Representations of Images and Degradations

Depending upon the specific application and processing technique

employed, an image may be represented in several different ways, eg., space

domain versus frequency domain representation; 2-D versus 1-D representation.

In this section, the various representations will be discussed, followed by a

description of the commonly used image and degradation models.
Image Representation

Let g(x,y) be a continuous image in the image plane (x,y). To
represent the image in the discrete form for digital processing, it is necessary to
sample the continuous image according to the two-dimensional sampling
theorem. Thus, if the Nyquist criterion is satisfied, the image may be
represented by the 2-D sequence g (nq,n,) where n, and n, are, respectively, the

distance indices in the horizontal and vertical directions.

Another discrete representation of the image is obtained by raster

scanning the image to form a 1-D vector g, where

[ g(1,1) |
g(1,2)

g=|s(N) ()
g(2,1)

g (N ,N)]

where N XN is the size of g(n,n,). This representation is most useful in linear

algebraic restoration methods.
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In the frequency domain, g(n;n;) is represented by its Fourier
transform defined as
N-1N-1

Glopw) =3, 3 glapny) e *Me ™M 22)
l|4) Rz‘*’

This representation is useful for processing in the frequency domain.

One useful representation often used in recursive algorithms is that of
state space representation. It may take many different forms depending on the
state variables chosen. In state space representation, the image is modeled as
the output of a dynamical system, which relates the present state at a pixel of
the image to the states of its neighbors. A general form of the dynamical

model is given by
s(n) =A(n)s(n—~1) +B(n)u(n) (23)

r(n) =C(n)s(n) +w(n) ‘ (24)

where s is the state vector, r is the observation, w is the observation noise, and
v is the white noise that drives the system. A, B and C are, respectively, the
system, drive and observation matrices. State space representation is typically
used in the causal estimation of a future pixel from the noisy observation and

some amount of information about past and present estimates.
Image Formation

To restore images suffering from spatial degradation, such as blurring,
the degradation must be characterized mathematically. Let g(nq,n;) be an
image of an object f (ky,k;). In practical imaging systems, the intensity of the

image at the point (ny,n,), g (n{,n,), is a function of f (k,k;). If the function is
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linear, the general description of g is

gny,ny) =3 3 h(ny,nzky,ks) f (kyk2) (25)
N

The function h is referred to as the point spread function (PSF). If & is

assumed space invariant,

gnyny) =3 3 h(ny—*k,ny—%3) f (ky,k2)
k, ky

=h(ny,n3) * f (ny,n3) (296)

where * denotes 2-D convolution. In terms of vector-matrix representation,
g =HI (P 2))
where g and f are vector created in the manner described by Eqn. (21), and H

is a N 2xN 2 matrix created from & (n4,n5).

In the frequency domain, Eqn. (26) can be written, by taking Fourier

Transforms on both sides, as

G (wy,07) = H (w1,02) F (w1,07) 28)
where G (wy,w;), F (wy,07) and H (wy,w,) are the Fourier transforms of g (ny,n;),
f (ny,n3), and h(nq,n,) respectively.
Point Spread Function

The PSF h(ny,n5;k,k5) is the response of the imaging system to a unit
point source located at (kq,k;). It can be used to characterize many distortion
and blurring effects of the imaging system. One such example is the long term

exposure in atmospheric turbulence, where the PSF is approximately Gaussian
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and given by
_ 1 witw]
H(@,w)=e 2 7 (29)

where o? determines the degree of spreading.

Image Model

An image is described by a model which is an abstraction of the struc-
ture of the image or of a class of images. One commonly used model in image
restoration is a statistical model. An image is then a sample of the random
process described by the model.

If the probability density function (PDF) of the image process is
known, the parameters of the PDF completely describe the image. One exam-
ple is the multivariate Gaussian PDF, which is fully characterized by its mean

vector f and covariance matrix ®, defined, respectively, by
f=E[f] (210)
and

o, =E[t-DEH)] (211)

where E[-] denotes expectation. In most cases, the specific PDF is not knowa.

A good, concise description of the image can still be given by the mean f and
the covariance function & .

A common assumption on image model is that of stationarity. A ran-
dom process is said to be strict-sense stationary (SSS) if the joint PDF of any
collection of samples depends only upon the spacing between samples. Because

it is usually difficult to show that a given process is SSS, a more practical and
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more common assumption of stationarity is that of wide-sense stationarity. An s
® image is wide-sense stationary if the mean is constant and the correlation o |
between pixels is independent of the absolute locations of the pixels,ie.,
f (ayp2) =E[f (ny,ny)] = constant @12)
3 e
R(ny,nyky,k2) =E[f (ny,n2)f (ki,k2)] =R (ny—kq,nz—k;) (1) o
In this case, @, as defined in Eqn. (2.11) has a block Toeplitz structure. ‘
® Noise Model o
A noise model commonly assumed in image restoration is that of addi-
tive white noise. A degraded noisy image may then be described by
. .
8(n1,n2) =f (n1,n2)* h(ny,nz) +w(nq,ny) (214)
where w(ny,n,) is a signal-independent white noise sequence. Many physical
* noise processes can be approximaced as white noise, eg., random thermal noise ;.\ P
in image sensor circuits. P 1
Another common noise model is that of multiplicative noise. It is .
et °
described by :
g(ny,nz) =[f (n1,n2)*h (n4,n3) w (ny,n57) (215)
: One example of multiplicative noise is the speckle noise in laser generated .
images. In general, if an additive noise component is proportional to the signal,
it can also be modeled as multiplicative noise.
. ]
e ®
o °

DI T SR W PN S h SPNS S. e S L) PO PRI, SU VAL S SO S WL r S S N

P Ue W WA S Vol |




Tv_ e — ARG I B i At S 2 Bl g PEL e AN A Jbte Ma Sre b aC R Shin N G I SR aRin /A b Al S Sl et S S Ei A A A A

¢ -26 -

23 Nonadaptive Image Restoration

In a stationary image model, an image is assumed to be a sample of a
wide-sense stationary random process with a constant mean vector and a block
Toeplitz covariance matrix. Linear filtering, generally based on some least
square criteria, can then be applied to obtain an estimate of the original image
from the degraded observed image. The filter may be implemented in the fre-

quency domain to take advantage of the computational efficiency of the FFT

(Fast Fourier Transform) algorithm. In the space domain, using state space
representation and a causal model, recursive algorithms also result in efficient

implementation. Two typical examples of linear filtering will be discussed. » | J
Wiener Filter 1
The following model is assumed:

g =Hf +w- (236) »

where f is assumed zero-mean and w is signal independent. It is also assumed

1

that the image correlation and the noise process are known a priori. By impos- 1
ing a minimum-mean-square-error criterion, which minimizes the expected !
\

error [ —f of the estimate f over the ensemble of all possible images, ie.,
min E [(1-6)T (11 ) )
: [(r£)" (£-1)] @1 -
]
)
the estimate was derived by Helstrom (11} as ]

f=0,HTHOHT +3,)7g (218)

where &, and ¥, are the autocovariance matrices of f and w respectively
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Because of the high dimensionality of the matrices (N2xN?), Eqn.
(218) cannot be evaluated efficiently. However, if f and w are stationary
processes, then ¥, and ®,, are block Toeplitz, and Eqn. (2.18) can be evaluated
by DFT (Discrete Fourier Transform) approximation as
H .(k l,k2)

Pw (k l’k 2)
Py (k1,k2)

F (kyk3) = G (k 1,k ) (21)

IH (kq,ky) 1% +

where F (k1,k3), G (kq,kz), and H (k,,k;) are the DFT’s of f (ny4,n3), g(nq,n5),
and h(ny,n) respectively. P (ky,k;) and P, (ky,k;) are the discrete samples of
the a priori power spectra of f(ny,n;) and w(ny,n,) respectively. Thus, if
H (ky,k>) is also known a priori, f (n1,n,) may be obtained by the inverse DFT
of F (ky,k5) calculated from Eqn. (219).
2-D Kalman filter

The application of recursive methods in image restoration is motivated
by the success of Kalman filtering in 1-D filtering and prediction problems.
With the techniques of spectral factorization, the dynamic model of the image
random field may be described by a partial difference equation that is recur-
sively computable. The direct extension of the Kalman filter to image restora-
tion was first studied by Habibi [12]. In his approach, Habibi assumed that the
random field is a separable 2-D first order Markov process whose autocorrela-

tion function is given by
R (kyky) =ofe kg mulh! (220)

The image can then be represented as the output of the following autoregres-

sive system

.
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f (nt,ny+l) =p1f (nytl,n3) +py f (my,n3+)) — pipaf (n4,n3)
+4/TD){T95) u(n1,n7) (221

where the correlation coefficients py, py are given respectively by
p=e ™ (222)
and

oy =™ (223)

and u(n,n,) is a white noise sequence.

The minimum mean square error estimate of f is given recursively by
f (1 #,ny41) = o1 f (n1#1,n2) +pp f (n1,n241)

Hppr +K (n4,n2))f (n4,n3) + K (ny,n2)y (n,n2)  (224)

where X (n,n5), a spatially varying function of g, is also recursively comput-
able. Thus, if a; and a; are known, Eqn. (224) recursively generates all values
of f, given assumed boundary conditions at the topmost row and leftmost
column of the image.
Discussion

In these examples, as well as in their other extensions, the autocorrela-
tion function of the original image (or equivalently, its power spectrum) must
be known a priori. This is not true in most practical situations. The autocorre-
lation function can also be estimated by some other means, for example, by
averaging the autocorrelation functions of several prototype images. However,
the accuracy of this approach is questionable. These techniques also require

that the image be stationary to achieve efficient algorithms. In the Wiener
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filter, for example, nonstationary correlation matrices make fast implementa-
tion in the frequency domain impossible. In the 2-D Kalman filter, although
nonstationarity may be accounted for by spatially varying correlation func-

tions, estimating them in the noisy image remains a difficult task.

Pictures processed by nonadaptive techniques generally appear to be
too smooth. This is partly because the solutions are obtained by a minimum
mean square error criterion, which is not the criterion the human visual system
uses to judge the quality of an image. More importantly, the smoothness is

caused by the simple stationary assumption which is invalid in most images.

2.4 Adaptive Image Restoration

The previous section illustrated the shortcomings of nonadaptive linear
restoration procedures. The main difficulty was due to the assumption of sta-
tionarity. The general approach to solving this problem is to perform subimage
processing, in which the image is first divided into subimages. Each subimage is
then processed independently, assuming local stationarity. In this case, the
model parameters have to be determined for every subimage. In order to
reduce the amount of caiculation, the model is often a simple one, as illustrated
by the two following examples. The first example deals with nonlinear sensor

characteristics. The second example is an adaptive Kalman filter.
Sectioned MAP method

Trussell and Hunt [13] derived a maximum a posteriori (MAP) method

for restoring images degraded by nonlinear sensor characteristics, as described
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by

g=s[Hl] +w (225)

where s{‘] represents the nonlinearity. Using the multivariate Gaussian

assumption for f and w, the solution is given by an implicit equation :
f=T+0,87S,0;'g—s [ﬂi]} (226)

where f is the a priori mean of the original image and S, is a diagonal matrix

of derivatives of s.

By dividing the image into blocks, Eqn. (226) is solved iteratively for
the estimate in each block. To simplify the computation, ¥, and P, are
replaced by a} and o2 respectively, ie, the spatial correlation is ignored. The

estimate for block m is, therefore,
- - c} r [ . - ]
f. =1, + —;H S, lg,, —s[llf,,.]] (227)
ow

The results are combined by the overlap save method.
Adaptive Kalman Filter

Instead of dividing the image into fixed-sized blocks, the partitioning
can also be done by other means. For example, the image can be partitioned
into regions according to local correlation characteristics. Then, a filter using
the correlation parameters in each region can be implemented. In [14], parti-
tioning is done by thresholding the spatial activities at each pixel, measured in
terms of signal directional slope information, into one of M values. Each
region is then characterized by one of M stationary autocorrelation functions

which, for simplicity, are assumed to be exponential and separable. The
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correlation coefficients p;, p, are determined for each of the autocorrelation
functions. A bank of Kalman filters are then run in parallel, one for each
region, with special care to the boundary conditions at the border between
regions.
Discussion

In most adaptive restoration systems, the algorithm implemented in a
local region is generally a straightforward extension of the global nonadaptive
algorithm. Since local signal characteristics must be determined for each
subimage or region, the image model for each subimage or region has to be

kept simple to reduce the amount of computation in both model parameter

identification and filter implementation.

Partitioning of the image may be done block by block or by variable
size and shape. Since each subimage is processed by a filter which may be
significantly different from the ones in the adjacent subimages, care must be
taken in combining the results of neighboring subimages, as well as in matching

boundary conditions at the border.

2.5 One-Dimensional Approximations to Two-Dimensional Image Restoration

In this section, we will summarize some restoration techniques using 1-
D processing. Such 1-D processing is typically used as an approximation to the
2-D approach, partly because of the difficulty in establishing a good 2-D image
model, and partly to reduce the heavy computational loads associated with

adaptive filtering.
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) Restoration Based on a Muitiple Fragment Model i

E‘ In [15], Lebedev and Mirkin assumed that an image is composed of five i . :

- classes of fragments. Each class of fragments is distinguished by the type of )
1 correlational links between the elements and characterized by a specific corre-

h lation R, (1=0=5). Four of the classes correspond to prominent correlational ’ ]
N links in the four directions at 0°,45° 90° and 135°. The fifth describes fragments
with an isstropic structure. It is assumed that p(6), the a priori probability

:] density of the five classes, is known. For each class 8, p (g 16), the conditional ’ :

probability density of the image data, is assumed Gaussian and known. '

E. The estimate of f in a window is calculated as follows. Let f(n 1,n210) _. J

be the conditional estimate of f assuming that the windowed data belong to
the particular fragment class 0. For each 0, since R, is assumed known,
fn 1,12 16) can be calculated by linear methods, for example, Wiener filter. Let
p(0ig) be the a posteriori probability that the windowed data belong to the

class 8. p(01g) can be obtained by Bayes rule as

p(°'s)={(°)p(‘g'e) (228)
Ep(o)p(x 16)
1

The estimate of f is then the sum of the conditional estimate f (ny,n,16),

weighted by p(01g), ie,

~ 5 -
f(ny,nz) = EIP(O'x)f(nbnz'O) (229)
o=

In summary, the image data in a moving window are filtered by four
1-D filters and a 2-D averaging filter. The restored image is given by the sum of

the five outputs with weights equal to p (8ig).
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Modified Wiener Filter

Abramatic and Silverman [16] derived two spatially variant filters for
restoring unblurred but noisy images. The filters are Wiener filters modified by
a visibility function F (n,,n,) proposed by Anderson and Netravali [6]. The
transfer functions of the two filters are

Py (wy,w3;n1,n3)
Pf (‘“b“’z;"b"z) +F("19"2)°3

Hpg (wy,w3;n4,n5) = (230)

and

Py (wy,a;m1,83)
Py (wy,w;n4,n3) + 02

Hpg (w,w2;m1,m3) =F (nyq,n3) +[1-F (ny,n3)] (231)

where Py (wy,wp;n4,n7) is the local power spectrum of f at (n4,n;). The noise

is assumed additive and white with power o2.

The sequence F (ny,n,), with values between 0 and 1, is a monotoni-
cally decreasing function of the ‘busyness’ of the pixel at (ny,n;). As F(ny,n5)
varies from 0 to 1, the filters are a compromise between the identity filter and
the Wiener filter. Thus, in edge regions where F (n4,n,) is close to 0, the filters

approach the identity filter, and edges are preserved.

Since Pj(wy,wy;nq,n3) has to be estimated at every point (n4,n;), two
suboptimal procedures were proposed. In both procedures, the image is
described by a single known power spectrum. Its nonstationary properties are
contained only in the space varying visibility function F (n4,n,). In the first pro-
cedure, both the power spectrum and the restoration filters are assumed separ-
able so that Hp(wy,wy;m,n5) can be approximated by a horizontal filter

H {(wy;nq4,n,) and a vertical filter H ;(wy;n4,n5). In the second procedure, a 1-D
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filter calculated by either Eqn. (230) or Eqn. (231) is determined for each of
the 4 directions at 0°, 45°, 90°, and 135°. The approximate 2-D filter is recon-

structed by bilinearly interpolating the four filters.
Order Constrained Median Filter

In [17), the estimate at a pixel is given by the average of the outputs of
two 1-D filters oriented in the horizontal and vertical directions. Within each
filter window, the filtering process consists of two steps. The first step is a
trend detection scheme based on a simple hypothesis test. Assuming that the a
priori means of the image data in the window are mym,, - - /m,, the trend of
the data, assumed to be either monotonically increasing or monotonically

decreasing, is determined by the hypothesis test:
Hy:my=my=<-----=m, (232)
versus

Hl my=mg = =m, (233)

Under each hypothesis, the maximum likelihood estimate of m;, constrained by
the assumed trend of the data, is determined. In step two, the median of the
estimate m;, obtained under the selected hypothesis, is taken as the output of

the 1-D filter.
Discussion

Approximations to 2-D restoration filter arise from the difficulty in
obtaining the local edge information or the local power spectrum from the

degraded image. As illustrated by the examples, one way to approximate a 2-D

filter is to assume that the filter is separable. This leads to cascaded 1-D filters
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in the horizontal and vertical directions. A more common approach is to sum,

® average, or select the outputs of several 1-D filters running in parailel. These
approximations generally give suboptimal performance compared to the truly :
2-D approach, although the amount of computation is reduced. ’
P
© ° 4
1
2.6 Summary B -’.-;.’:
° This chapter reviewed the common approaches to image restoration. o ‘
The earlier approach based on linear filtering is not suited to the nonstationary ]
nature of practical images. Adaptive restoration by subimage processing has 4
" been the general approach adopted recently. One disadvantage of suc. an ._ 1
; approach is the amount of computation required. Primarily to reduce compu- J
- tation, several 1-D processing schemes have been proposed as an approximation }‘:
to the 2-D adaptive filter. However, such an approximation would result in * '
suboptimal performance. In the next chapter, a new 1-D approach to adaptive
- image restoration will be presented. : . 1
]
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CHAPTER 3
A ONE-DIMENSIONAL APPROACH TO ADAPTIVE IMAGE RESTORATION

3.1 Introduction

From the brief review in chapter 2, one can conclude that a good

image restoration system

(1) should be based on a nonstationary image model and able to

adapt to the changing characteristics of an image,

) should require little a priori information about the original
image and estimate the filter parameters from the observed
image,

(3) should be easy to implement and require minimal computa-

tional efforts, and

4) should reduce noise while preserving edges and details in the

image.

Many existing restoration methods possess these properties, but their
performance has rooms for improvement. More specifically, some of these
methods are based cn simple nonstationary image models, and preserve edges
by removing less noise in the edge areas than in the flat areas. As a result, the
edge areas appear noisy, especially for images at low signal to noise ratios
(SNR). In this chapter, a new approach making use of 1-D filters is proposed.
The objective of this approach is to improve the performance of the general 2-

D approach for some adaptive image restoration systems.
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32 Motivation of the Approach

Ideally, the desired filter that would remove noise in all regions, e
including the edge regions, should have a large support in flat areas for better
noise smoothing. In the edge regions, the filter should be norisotropic and
change its shape and size to adapt to the edges in order to reduce noise at the

edges and to preserve the edges.

Examination of some adaptive restoration techniques [eg. 56] reveals

that the filters are

(1) based on a simple image model which is insensitive to the

‘o orientation of the edges, °

(2) of the same support size regardless of the image characteris-

tics, and
3 isotropic, ie., symmetrical in all directions about the original.

As a consequence, the performance of these filters is not satisfactory.

v e
L A'J‘.‘ ‘l‘ A

o One approach to achieve better noise reduction and edge preservation
is to model the image more accurately (considering an image edge as a deter-

ministic component, for example) and develop a new image restoration algo-

%!

rithm based on the new model. However, modeling an image accurately is a °
difficult task, and the resuiting image restoration algorithm based on a detailed

accurate image model is likely to be quite complex.

A much simpler approach is to use a 1-D filter without changing the

system. If a 1-D filter is allowed to change its orientation, it may be aligned in

image model or the basic principle used in developing a 2-D image restoration 1
1
the same direction as the edge, and avoid intersecting the edge. In this manner, 1
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the noise at the edge is removed and the edge is preserved. The next section
presents a 1-D approach to image restoration which is simple, does not require
an explicit edge detector to orient a 1-D filter, and can be applied to both edge
and non-edge regions. As will be discussed in the next chapter, when the 1-D
approach is applied to some existing 2-D image restoration algorithms, tech-
niques developed based on the 1-D approach performs significantly better than

the corresponding 2-D techniques.

3.3 The Basic Principle

Consider an image f (n,,n;) degraded by some noise w(ny,n;). The
degraded image will be denoted by g(nn;). If a 2-D adaptive filter is
represented as T[-), f (ny,n2), the output of the adaptive filter, can be

represented as
f (nyn3) =T (ny,n))] (R Y)

The adaptive filter T| -] is typically determined from a local 2-D region (or
window) of the image surrounding (ny,n,) based on some image restoration

principle, such as Wiener filtering.

Let T;[ -], (1=i <N), represent the 1-D filter, which is obtained in the
same way as the 2-D adaptive filter, but determined from a local 1-D region (or
window) oriented in the i** direction. For practical reasons, let N =4, and let
the four directions be the major correlation directions of most practical images,
ie, 0,90, 45 and 135 degrees. The noisy image is filtered by a cascade of the

{our filters, as if the image were a 1-D signal for each of the filters (Figure 31).
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The output of the system f (n4,n5) is then given by

faypny) =T4|T4|T, (32)

Tl{g("bnz)}”]

It should be noted that T; ’s are not obtained by factoring T . If they
were, the system of the cascaded 1-D filters would be identical to T. The
approach also does not attempt to approximate T by a cascade of T; ’s. The
output of the cascaded filters may therefore be significantly different from the

output of the 2-D filter.

3.4 Discussion

3A.1 Advantages of the approach

The cascaded 1-D processing improves the existing 2-D methods
without modifying the assumed image model or the basic principle of the 2-D

methods. Specifically,

() in the flat areas, the cascaded 1-D filters is equivalent to a sin-
gle 2-D filter with a much larger support size than the original

2-D filter, thus resulting in more effective noise reduction;

2) in the edge regions, the noise near an edge is smoothed by one
cf the 1-D filters oriented approximately in the same direction

as the edge;

(3) since the 1-D filters are adaptive and edge preserving, sequen-

tial application of the four filters does not blur the edges;
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4) the computational load of this approach is typically lighter
than the corresponding 2-D filtering because of the 1-D calcu-

lations.

342 Comparison with Other 1-D Approaches

A few examples of other 1-D approaches to adaptive image restoration
have been reviewed in the previous chapter. Their general principle can be
summarized by Figure 32. The noisy image is filtered by a bank of filters whose
outputs are summed, selected, or averaged to give the output of the overall sys-

tem.

The parallel structure of these approaches is obviously different from
the cascade structure of the present approach. More importantly, their objec-
tives in using 1-D filters are fundamentally different. The other 1-D approaches
generally aim to reduce the amount of computations by approximating the
truly 2-D filters. The results are generally suboptimal compared to the truly 2-
D filters, as some information in the 2-D domain is unavoidably lost in the
approximation. In contrast, the goal of the present approach is to improve the
performance of the 2-D filter by using 1-D filters to compensate for the lack of

edge information in the 2-D filter.

Since the present approach has a cascade structure, weight calculations
are not necessary. In the other approaches, the manner in which the results are
combined may result in further deterioration of performance. For example,
any forms of unweighted or weighted averaging would blur the edges, while

selecting one output out of several would result in insufficient noise smoothing.
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3A3 Practical Considerations

Because the filterings are performed sequentially, the signal and noise
characteristics change aftér each filtering and have to be updated before subse-
quent filtering. Certain assumptions may have to be made so that the same res-
toration principle may be used on all four filters. For example, if the principle
is based on the assumption that the image and noise are not correlated, the

same has to be assumed for all four filters.

Although four sequential filtering operations are involved, a large on-
line memory is not required. Since each of the 1-D filters performs local filter-
ing, the next filter may commence as soon as sufficient data are available from
the previous filter. Therefore, with a moving buffer of modest size, the four

filtering operations can practically be performed in parallel.

The size of each of the 1-D filters should be selected so that the 1-D
filters may follow closely the contour of the edges in the image. On the other

hand, it should be sufficiently large for adequate noise reduction.

The operators T; s are data dependent, space variant, and, therefore
non-commutative. Therefore, the order in which the four 1-D filters are per-
formed will affect the final results. For a general image with no prominent
correlation in any particular direction, the different orders do not result in any
significant difference in performance. However, if an image shows a lot of
correlation in, say, the vertical direction, then it is preferable that the filtering

in that direction be carried out first.

In applying this approach to an image restoration system, one must

remember that this approach performs well because it implicitly takes into
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account the orientation of the edges. Therefore, it will achieve better improve-

L‘ ment over the 2-D approach if the latter does not model edges adequately. o
3

3.5 Conclusion e

-
IR Y

A new 1-D approach to adaptive image restoration has been presented.
The approach, motivated by the ability for 1-D filters to remove noise along an
tl edge, aims to improve the performance of some adaptive image restoration sys- ’

tems which do not model edges adequately. It is different from previous 1-D

r approaches which typically approximate 2-D filters for computational reasons. ]
t_' Some specific examples of using the new approach will be given in the next ) 1
chapter. |
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CHAPTER 4

APPLICATIONS OF THE ONE-DIMENSIONAL APPROACH

4.1 Introduction

In this chapter, three examples of applying the 1-D approach to exist-

ing 2-D image restoration systems will be presented. The restoration systems

used are
8}
(2)

)

an adaptive filter based on local statistics of the image [5],

an adaptive filter based on the noise sensitivity of human

vision [6], and

an adaptive filter using the spectral subtraction technique [7].

In all three examples, an image f (nq,n,) is degraded by additive white

noise. The observed image g (ny,7,) can be represented by

8 (" 17"2) = f (Il 1,7 2) +w (n l’nZ) (4'1)

where w(ny,n,) is a zero-mean white noise sequence assumed uncorrelated with

f (ny,n3).

The basic principle of each algorithm will be reviewed. The 1-D

approacii wiil be used to modify the algorithm, and the experimental resuits of

restoration by both 1-D and 2-D approaches will be presented.
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42 Adaptive Filter Based on Local Statistics

Ao —

','1".' P R O

A very simple, but effective restoration algorithm was proposed by

Lee [5]. In this algorithm, edges are modeled by higher local signal variance,

and preserved by an adaptive filter determined from the values of the local

variance and mean. o,

4.2.1 The 2-D LLSE Algorithm

By modeling an image f (ny,n;) as consisting of a nonstationary mean
component [18] and nonstationary and approximately white fluctuations about

the mean, the linear least square error (LLSE) estimate of f (n,,n,), based on

local stationarity, is readily derived as :
B

f(nyng) = afz(nan) [8(,n3)-m, (ny,n3)] + ms(ny,ny) (42) -]

Lh2) = 172 1,72 112 -]

o} (n1,n7) ol (ny,ny) s ! | ]

-

where my (ny,n2) and o}(ny,n;) are, respectively, the a priori local mean and
variance of f (n4,n3) ,02(ny,n,) is the local noise variance, and mg(ny,n,) is the
mean of g (nq,n;). '

The a priori mean and variance of f (nq,n;) are estimated from the

;~_ observations in a (2p +1)X(2¢q +1) window as 4
. L
r Ay (a1y2) = g (1 1,m2) L__ % % stk 43 :
ni,Na) = nyny) = ’ )
f 1,702 g V172 (2p +1)(2q +1) i hq‘z_qg 1% 2 -
. and ,"-']
. .2 2 e a2 2 7
s G4(ny,n2)—ou(ny,ny) if 6,(ny,n3)>05(ny,n3)
67(nnz) =19 otherwise (44)
L ¢ where
4 . L
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1 mip  atg

(2p H1)(2q +1) h=§rp kl=§;—q[g (k 1,k 2)_'ﬁg (n 1:"2)]2 45)

&2(ny,nz) =

The LLSE algorithm can be viewed as an example of the two-channel
process described in Figure 4.1. In the two-channel process, the input signal is
divided into two paths: a low-pass signal (m,) and a high-pass signal (g —m,).
The high-pass signal is scaled by a function of its variance, as described by Eqn.

(42), and combined with the low-pass signal to form the output.

The filter is spatially variant and nonlinear. Its coefficients are calcu-
lated at every pixel with the window sliding in the direction of scan. Edges are
preserved through the ratio of o/(n1,n;) to 02(ny,n,). As 0(ny,n,) varies from
0 to =, the filter is a compromise between the simple local averaging filter and
the identity filter. Thus, at high SNR regions, such as edge regions, where
o,z(n »n7) is much higher than o2(ny,n,), the estimate is nearly equal to the

observation, and little noise is removed.

The local LLSE filter preserves edges by removing less noise in the
edge region than the flat region. This is acceptable if the image has a high SNR
and is processed for human viewing, as the human visual system is less sensitive
to noise in a busy area. However, for images with very low SNR, the
unremoved noise near edges may become clearly visible. Furthermore, if the
processed image is to be used for subsequent processing, rather than human
viewing, it is preferable to remove noise from the edge regions as well. It will
be demonstrated that by applying the 1-D approach, one can remove noise near

an edge, while preserving the edge.
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422 The 1-D LLSE Algorithm

Consider a 1-D spatially variant filter oriented in the horizontal direc-
tion and implemented using the same principle as the LLSE algorithm. The

output of the I-D filter is

.2
filnyng) = 6f(ny,n3) [8 (B1,n2)—1h, (n1,n2)] + s (R1,n3) (46)
8 ()40l (nq,n2) ] r(ny,

where the mean and variance estimates are calculated from

1 myip
ms(ny,ny) =m,(n,ny) = ——r ky,n 47
¢ (n1,n3) =mMy(ny,n3) @ +1)hq2"_ps( 172) 47
and
Az 2 -f Az 2
" Gg(ny,na)—og(ny,ny) if 65(ny,n2)>05(ny,n2)
67 (n,n2) =19 otherwise (48)
where
"2 1 P R
03("1’”2) = (217 +l) 2 [8(kl’"2)_mg ("17"2)12 (49)
ky=np

The second 1-D filter, say, the vertical filter, is obtained in a similar
way and applied to f 1(n,,n;). We note, however, that the noise term o2(ny,ns)
should be updated as the first filter has reduced the noise power. Thus, if
hi(k ; nq,n;) represents the unit sample response of the first filter at (ny,n,), we
can estimate the reduced noise power at each pixel, (n4,n,), as

2 7, 2
ou(nypn) = 3 hi(kyngng) olky,ng) (410)
ki=ny-p
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Extension to the two remaining 1-D filters at 45 and 135 degrees is similar.

The resulting system is a cascade of 1-D filters capable of adapting to
the edge orientation in the image, whereas the 2-D filter discussed earlier is
insensitive to edge orientation. Thus, a sharp edge inclined at a large angle to
the filtering direction remains practically intact, while the noise at the edge is
removed by one of the filters oriented closest to the direction of the edge. The
1-D approach also performs better in low contrast regions. If the 1-D filters are
each of length M, the cascaded filters are in effect an octagonal filter with
sides of length M and a filter support of size 7M 2~10M +4. This is considerably
larger than M2 for a M xM 2-D filter, and more effective in noise reduction.
The objective and subjective improvement in performance over the 2-D LLSE

filter will be shown in the next section.

423 EXPERIMENTAL RESULTS

This section presents experimental results where both 2-D and 1-D
filtering techniques, discussed in the previous sections, were applied to restore
images degraded by additive white noise. In the 1-D method, the image was
filtered horizontally (0°), vertically (90°), along the (45°) angle, and finally along
the (135°) angle. The window sizes were chosen as 5x5 and 5x1, respectively, in
the 2-D and 1-D methods for the best tradeoff between noise removal and reso-

lution.

Figures 42 and 43 illustrate the behavior of the two filters near an
edge. Figure 42(a) shows an image, consisting of two flat regions separated by a

vertical edge. The image is degraded by noise, as shown in Figure 42(b). The
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Figure 42 (a) Original image.

(b) Noisy image.

(c) Image in (b) restored by the 2-D LLSE algorithm.
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© (d)

Figure 43 (a) Figure 42(b) processed by the horizontal filter.

(b) Image in (a) processed by the vertical filter.
(c) Image in (b) processed by the 45-degree filter.
(d) Image in (c) processed by the 135-degree filter.
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rasult of 2-D fltering, as shown in Figure 42(c), indicates practically no noise
smoothing near the edge. Figure 43 shows that the noise near the edge is
reduced by the vertical 1-D filter, while the edge is not blurred by the other
three filters. Figure 43(d) also shows more noise reduction in the flat regions

than that achieved by the 2-D method.

The results of processing real images are shown in Figures 45 and 4.7.
Two images of the 'BANK’ and the 'GIRL’, which have different correlation
characteristics, are chosen. The original pictures, each with 256256 8-bit pixels,
are shown in Figures 44(a) and 45(a). The images were degraded by additive
white Gaussian noise at various SNRs. The SNR of an image, say g(ny,n3), is

defined as

33 g(ny,n)~f (n1,n)F

SNR =10 log —=
S3If (npny)-m P

nyny

(411)

where m; is the mean of the original image f (ny,n;). Two degraded images at
a SNR of 10 dB are shown in Figures 44(b) and 45(b). In both methods, the
noise variance was estimated from a window of about 1500 pixels in a flat area

of the degraded image.

The results are summarized in Table 1, which lists the improvement in

SNR, for input SNRs ranging from 0 dB to 10 dB.
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g

Figure 44 (a) Original BANK’ image. ]

(b) BANK’ image degraded by additive noise at 10dB SNR. .

’
d
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3 )|
Figure 45 (a) Original 'GIRL’ image.
‘ (b) '"GIRL’ image degraded by additive noise at 10dB SNR. '
‘ ’
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Table 41: SNR improvement: 2-D vs 1-D LLSE algorithms

Input Improvement (dB)
SNR 'BANK’ Image ’GIRL’ Image o
. @
(dB) | 2-D filter | 1-D filter | 2-D flter | 1D filter o
0 664 751 8566 931 g
3 609 694 730 814 * :
6 546 617 6.79 728
10 447 499 553 574 .
Quantitatively, 1-D filtering results in up to 1 dB improvement over 2-D filter- °
ing. The improvement is more significant for the 'BANK’ image, which L
possesses more distinctive correlation in the four directions considered. The
improvement in visual quality can be seen in figures 46 and 4.7. Figures 46(a) | .
and 4.7(a) show the results of the 2-D method, and figures 4.6(b) and 4.7(b) show B
the results of the 1-D method. The 2-D filtering preserves edges, but does so at
the expense of insufficient noise removal, particularly in the edge regions. °
Images restored by the 1-D approach show its superiority in preserving edges ‘
and reducing noise in all regions, including the edge areas. This is shown more
clearly in Figures 48 and 49, which are enlarged segments of Figures 44 - 47. ¢
These results indicate that the 1-D filtering is more effective in both high and
low contrast regions.
°
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{ Figure 46 (a) Figure 44(b) restored by the 2-D LLSE algorithm.
(b) Figure 44(b) restored by the 1-D LLSE algorithm. : j
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Figure 47 (a) Figure 45(b) restored by the 2-D LLSE algorithm. ]
(b) Figure 45(b) restored by the 1-D LLSE algorithm. ‘
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Figure 48 (a) An enlarged section of figure 44(a). o 1

(b) An enlarged section of figure 44(b). - 1

o (c) An enlarged section of figure 4.6(a). °

(d) An enlarged section of figure 46(b). - 4
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Figure 49 (a) An enlarged section of figure 45(a). =
(b) An enlarged section of figure 45(b). ]
(c) An enlarged section of figure 4.7(a). 3

(d) An enlarged section of figure 4.7(b).
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43 Adaptive Filter Based on a Moise Visibility Function

The sensitivity of the human visual system to noise in an image
decreases with the amount of local spatial details. In other words, the sensi-

tivity is highest in the flat areas, and lowest in the busy areas. This effect is

incorporated in a restoration system proposed by Anderson and Netravali [6].

They quantified the noise sensitivity by a ‘'visibility function’, which represents
a subjective tradeoff between resolution and noise. Using this ‘visibility func-
tion’ they constructed a performance index, which leads to an adaptive filter
(called the S-type filter) capable of maintaining the tradeoff between the noise
removed and the blur introduced by the filter. This section describes further

improvement to this algorithm by the 1-D approach.

43.1 The 2-D S-type Filter
The Visibility Function

A ’masking function’, M (n4,n5), at a pixel (nq,n,) is defined as a meas-
ure of spatial detail at the pixel:

ntp nytg
M) =3 S c"eom b 1 ko) +im, (k k)] (412)

ky=nyp ky=m—yg

where 1!(ny,n3)—(k1,k;)! | denotes the Euclidean distance between (n4,n5) and
(k 1,k 3); my(ky,k5) and m,(k,k,) are, respectively, the horizontal and vertical
slopes of the image intensity at (k,k;); C is a constant (taken as 035). Note
that M (ny,n;) increases monotonically with the amount of spatial detail in a

neighborhood surrounding (n4,n,).
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A subjective test was conducted to determine a Visibility function’,

=
L‘r F (ny,n,), which gives the relative visibility of a unit of noise added to all parts
in the image where M (n,n,) has a certain value. In other words, the subjective

‘noise visibility’ at a point where F =F; is equal to that at another point where

k" F =W%F, and the amount of noise is doubled. It was found that F (n,,n;) can
be approximated by a decreasing function of M (ny,n,) as *
L F(nyny) = e P Ovmd) (4.13) | J
[€ .
for some appropriate value of B. ]
9
The Restoration Filter ,

Let the impulse response of the 2-D spatial variant filter be
h (k l,kz; ny,n 2), where
#0 —9=ky=q,—q =k=¢q

h(ky,ko;nq,n7) [ (414)
= otherwise

It is desired that the filter removes as much noise as possible. Cn the

.
.
.

P AL b

other hand, the filter must also introduce little blurring. The former is meas-

ured by the relative amount of noise passed, v,, given by

vo(ny,nz) = i i h(k 1,k 2; nq,n5) (415)
k=g k;=q

and the latter is quantified by the spread function

[N
L

wyl(nyng) = é i h2(k 1,k y;npn0) - (kE +k3) (416)
k=g k;=—q

b
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Since the two requirements are somewhat contradictory, the optimal
® filter is obtained by minimizing the joint objective function . E
J (n1,n2) =av,(n,n2) + (1-2)w,(nq,n2) (417) -
subject to the constraint
(] e
3 3 hlpkpnpng) =1 (418)
ky=q k=g S
(" ] where a (0 =a=1) is a tuning parameter. Using the Lagrange multiplier A, the ° |
1
sclution is given by 1
1
A !
“ a +(a)kf +kf) —g=ki=q,~q=ky=q °,
hikyka;ny,ng) = (49) o
0 otherwise - r
L4 where X\ is adjusted so that the constraint (418) is satisfied. ®
The Role of F (ny,n,) -
@ e
The filter is determined so that in flat areas, it approaches an averaging . )
- A«'- ‘-1
filter, and in edge areas, it approaches the identity filter. This is achieved by o
i tuning a so that the amount of 'visible noise’ is a constant. More specifically, : .; | ]
. L2
let & determine the relative amount of noise passed by the filter in a perfectly ' 1
N
flat area, where M (ny,n,)=0 and F (n,n5)=1. The value of ¢ is chosen from
. the range between '(2_l+ﬁi' (corresponding to a (2¢ +1)x(2q +1) averaging filter) ." -
q S
3
and 1 (corresponding to an identity filter), and held constant over the entire S
image. At a pixel where M (n(,n,) >0, set a so that the ‘visible noise’ at the ]
o . . ®
pixel is ]
[ 4 ' )
1
o - R SRR
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va(n,n2) Fi(ny,n0) = (420)

C where v is another tuning parameter. The parameter vy is held constant over
the entire image, for more control on the response of the filter to the *visibility

function’. We note that v, increases as M increases.

-
_ The algorithm to determine the filter is, therefore,
. (1) Choose a value of ¢ and a value of «.
g ) Determine M (ny,n,) and F (ny,n;) by Eqn. (412) and Eqn.
(413).
& 3) Solve Eqn. (420) for v, (ny,n5).
°

' 4) Iteratively adjust « and determine h(ky,k,;n4,n,) by Eqn.
| (419) until Eqa. (4.5) is satisfied.

(5) Repeat steps (2)-(4) for all (n1,n,) in the image.

We note that the impulse response h(ky,k;;nq,n,) is isotropic, and
changes its shape with the amount of local detail. Thus, at points of high detail,
the response is peaked, and in the flat area, the response is flat. Details in the
image are therefore preserved, and the noise in the flat areas is removed.
Although the algorithm does not explicitly require knowledge about the noise,
the value of vy that gives the best performance is influenced by the amount of
noise present via the masking function M (ny,n,). More specifically, for images

of low SNR's, the value of y will have to be tuned down to achieve better noise

smoothing.

'
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432 The 1-D S-type Filter

Consider a 1-D filter oriented in the horizontal direction and designed
using the same principle as the S-type filter. The impulse response of the 1-D
horizontal S-type filter is given by
A

a +(1-e)k? — <k =gq
hylk g3 ny,no) = (421)

0 otherwise

The procedure to determine the filter coefficients is similar to that in

the 2-D case. For example, the horizontal masking function is calculated by
ntp

Minpny) = 3 c'ewmdCemdll g ng)) (422)
ky=n,—p

The noisy image is then filtered by h4(ky; n4,n2). The resulting image is filtered
sequentially in the other three directions by the other three 1-D filters, each

determined in a similar manner.

433 Experimental Results

The same 'BANK’ and 'GIRL’ images used in the previous example are

used to illustrate the effectiveness of the 1-D S-type filter. The window sizes

were again chosen as 5x5 and 5X1 for the 2-D and 1-D algorithms, respectively.

The value of 8 in Eqn. (413) was chosen as 002, so that the visibility function is
similar to that given by [6]. The parameter ¢ was chosen as 004 and 02, respec-

tively, for the 2-D and 1-D algorithms. In both algorithms, the values of the

......
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masking function M (nq,n,) were estimated from the original noiseless image

fr*vr

because estimating M (nq,n,;) from the noisy image is unreliable (as noted in 1
[6]), especially for images of very low SNR’s. Although better ways of estimat-
ing M (ny,n;) from the noisy data have been proposed (see {16], for example),
noiseless estimate of M (ny,n,) was used for the purpose of comparing the 2-D

and 1-D algorithms. Since the performance of the algorithms depends on the

P ey
, .
e I
et
»
al

value of vy selected, the value of ¥y for each image was adjusted until the best

SNR improvement was obtained. 4

The results are summarized in Table 42 for various input SNRs.

{ Table 42: SNR improvement: 2-D vs 1-D S-type filters B

Input Improvement (dB) 1

SNR 'BANK’ Image ’GIRL’ Image

(dB) | 2-D filter | 1-D filter | 2-D filter | 1-D filter

0 809 933 955 1050 ]
3 742 883 897 979 ]
6 643 796 800 874 °
10 503 666 653 717

f 2

Similar to the LLSE algorithm in section 42, the 1-D S-type filter performs

better than the 2-D S-type filter. In terms of SNR, the 1-D filter results in 06 to
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15 dB improvement over the 2-D filter. The improvement is again more
significant for the 'BANK’ image. Figures 4.10 and 411 show the results of res-
toring the degraded 'BANK’ and 'GIRL images at an SNR of 10 dB (see Figures
44 and 45). The 2-D filter does not result in sufficient noise smoothing in both
the flat areas and the edge areas, as shown in Figures 410(a) and Figure 411(a).

This is improved by the 1-D filter, as shown in Figures 4.10(b) and 4 11(b).

4.4 Short Space Spectral Subtraction Technique

Image restoration in the frequency domain faces the problem of
estimating the power spectral density, P (wy,,), of the original image f (ny,n,),
from the noisy observation. Lim [7], using a particular method of expressing
P; (wy,w;) as a function of f (ny,n,), proposed a spectral subtraction scheme for
estimating f (ny,n,) directly from g(n,n,). The algorithm is implemented on a
short space basis, in which the degraded imagé is divided into many subimages.

Each subimage is restored separately, and the subimages are then combined.

4.4.1 The 2-D Short Space Spectral Subtraction Technique

A short space window r;;(ny,n;) is first applied to g(nq,n;). The win-
dowed observation g;;(n,n;) is related to the windowed image f;; (ny,n;) and

the windowed noise w;; (ny,n3) by
8ij(n,n2) =fij(ny,ng) +wy;(ny,n2) (423)

Then, by subtracting the noise spectrum from the spectrum of the noisy obser-

vation, the estimate of F;; (wy,w;) is given by

PUP PG G
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Figure 410 (a) Figure 44(b) restored by the 2-D S-type filter.
(b) Figure 44(b) restored by the 1-D S-type filter.

Figure 411 (a) Figure 45(b) restored by the 2-D S-type filter.

(b) Figure 45(b) restored by the 1-D S-type filter.
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[’Gij (“’1:”2) 12 —ak P, (‘”l""2)]%

IF,; (wy,09) 1 = if 1G;; (wy,02)12 > &k P, (wy,wp) (424)
0 otherwise
and
I Fij(opw) =3 Gjj(0,0;) (425)

where P, (wy,w,) is the power spectral deansity of the noise, assumed uniform
over the image. The parameter a determines the amount of subtraction, and
can be adjusted to give the best performance. The constant k normalizes the

power and energy spectral density, and is given by

k=373 ri(ny,ny) (426)

ny Ay
The estimate f (n,,n5) is then constructed by combining f ij (n1,n2) as follows:

f(ayng) =33 fij(nin2) (427)
L |

The window r;; (ny,n;) therefore must satisfy the requirement that

33 rij(ng,ny) =1, for all (ny,n,) of interest. (428)
i J

442 The 1-D Short Space Spectral Subtraction Technique

To use the same spectral subtraction principle for the design of 1-D
filters, 1-D windows and 1-D spectra are used. For example, in the horizontal
filter, a 1-D window r;;(ny) is used to window the data. The first estimate of

fij(ny,ny) is given by
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[1G;; (@) 1? —a kP, (w)l®  if1G;; ()12 >a ky-P, (w)

IF i (wpl = (429)
0 otherwise
and
9 Fuij(w) =96y () (430)
where
ky= ? riij(ny (431)

The results from the various windows are combined to form the output of the

horizontal filter, as in Eqn. (427).

The second filter, say, the vertical filter, may be applied in a similar
manner. However, the noise spectrum has to be updated because of the first

filter. Specifically, the new noise spectrum can be approximated as
P, ij(w) =P, (w) Hy;i(w)1? (432)
where H ;;; (wy) is the frequency response of the first filter given by

[1Gi; (@)1 —a-ky-P, (w)]

H i (wy) = (433)

0 otherwise

Extension to the other two filters is similar.
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443 Experimental Resuits ) 1
@ The 2-D and 1-D methods were applied to the 'BANK’ and 'GIRL’ . 0
images. The subimage sizes were chosen as 16x16 and 16X1, respectively. Separ- o
able triangular windows were used for the 2-D method, and triangular windows |
i were used for the 1-D method. To simplify calculations, the noise at the output : . ]
of each 1-D filter was assumed white. The SNR improvements are summarized .:
in Table 43. In obtaining these results, the subtraction factor a was adjusted to

obtain the best SNR improvement for any particular input SNR. The values of

a are different for the 2-D and 1-D algorithms and range from 1.5 for an input

PG S

SNR of 10 dB to 4.0 for an input SNR of 0dB.

Table 43: SNR improvement: 2-D vs 1-D spectral subtraction techniques .
T .. ‘
Input Improvement (dB) R
SNR ‘BANK’ Image ’GIRL’ Image

i R
(dB) | 2-Dfilter | 1D filter | 2-D filter | 1-D filter S
0 765 725 945 987 ]
°
3 703 627 871 858 o]
6 605 519 751 736 ]
10 473 385 599 559 o

\NP) .
) ® -
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As shown in Table 43, the 1-D technique does not result in better SNR

Al

than the 2-D technique. Examples of restoration of images at an input SNR of -
10 dB are shown in Figures 412 and 413. The resuits by 2-D spectral subtraction
in Figures 412(a) and 4.13(a) clearly show its ability to preserve edges and
details. Look, for example, at the vertical lines on the wall above the window ,
in the 'BANK’ picture, and the hair in the 'GIRL’ picture. This indicates that
the 2-D spectrum as estimated by the spectral subtraction technique can model

the edges very well. As expected, the 1-D spectrum as estimated by the 1-D 2

'H'Y p—— vv‘*rv. vy vH—rxv;v vl.-. -

approach does not contain as much edge information as the 2-D spectrum, and
therefore, its ability to preserve edges is inferior to the 2-D technique. On the

other hand, we notice the presence of a harmonic pattern in Figures 412(a) and

e

4 13(a). This, as explained by [19}, is due to the presence of a few narrowband

peaks of large amplitude in the residue after the spectral subtraction. The

amount of this type of artifacts is reduced by the 1-D technique, as shown in 1

Figures 412(b) and 413(b).

This example illustrates a limitation of the 1-D approach, as explained

PR R S NP

in Chapter 3. Specifically, if the 2-D approach is based on an accurate model of

the edges, the 1-D approach is not likely to improve its edge preserving ability.

3 4.5 Summary and Conclusion

o In this chapter, three existing 2-D adaptive image restoration tech- ;
; niques were reviewed. In each case, the 1-D approach was applied, using the
S

{ same principle as in the 2-D technique. Significant improvement was achieved

by the 1-D approach in the first two examples, namely, the adaptive filter based ]
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., Figure 412 (a) Figure 44(b) restored by the 2-D spectral ®
subtraction technique. ]
(b) Figure 44(b) restored by the 1-D spectral 1
e
od subtraction technique: -
Io . ‘4
1
- . -
I .o .
() | -,
Figure 413 (a) Figure 45(b) restored by the 2-D spectral p
| subtraction technique. e ‘
: |
(b) Figure 45(b) restored by the 1-D spectral |
subtraction techrique.
°
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=

on local statistics and the adaptive filter based on subjective noise visibility. In g
these examples, the edges were not adequately modeled, and the 2-D filters ,

were therefore isotropic. The sequence of four 1-D filters in four directions
compensated for this inadequacy in the model, cnd imnroved the noise smooth-
ing capability near the edges. K P

In the third example, the 2-D spectral subtraction technique showed its J
superiority in preserving edges and details, as the 2-D spectrum could accu-
rately describe the edges and details. No improvement, measured in terms of
SNR, was achieved by the 1-D approach. However, the 1-D approach was shown
to reduce the amount of artifacts present in the images restored by the 2-D

technique.

From these results, it can be concluded that the 1-D approach can
improve the performance of some image restoration systems which do not :
model edges adequately. The improvement is achieved by better noise reduc-

tion in the flat regions as well as in the edge regions, while the resolution of

the image is not sacrificed. p
<4
4
K
3
)
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CHAPTER §
FURTHER APPLICATIONS OF THE ONE-DIMENSIONAL APPROACH

5.1 Introduction

The 1-D approach developed in Chapter 3 is suitable for restoring
images degraded by additive noise. Specific examples were shown in the previ-
ous chapter to illustrate its effectiveness. This chapter deals with the applica-
tion of the restoration techniques based on the 1-D approach to three other

specific restoration problems, namely,

(1) the restoration of images degraded by blurring as well as addi-
tive noise,

(2) the restoration of images degraded by multiplicative noise, and

3 the reduction of quantization noise in pulse code modulation

image coding.

One approach to solving these problems is to transform the specific
problem into one which is suitable for filtering techniques designed for reduc-
ing additive noise. In each of these applications, a noise reduction system for
additive noise is incorporated as a part of the overall system. In particular, the
1-D LLSE algorithm developed in section 42 will be used, because it is effec-

tive in reducing noise without sacrificing the resolution of the image.

In subsequent sections, each of the applications will be examined, and

the experimental results presented.
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52 Restoration of Blurred and Noisy Images

52.1 The Principle of Inverse Filtering

If an image is blurred by an imaging system, which is characterized by

its point spread function 4 (n,n,), the image formation can be described by
G (w,wp) =H (w1, w7) F (wy,w7) (GRY)

One simple way to estimate the original image f (n4,n,) is to inverse filter

8(ny,n2),ie,

(52)

provided H (wy,w,) has no singularity for all frequencies (w,,w;). However, in
the presence of additive noise w (n4,n,), as shown in Figure 5.1(a), the estimate
is given by

w (“"b (02)

F (0’19"’2) =F (0)1,“’2) + H (wy,w9)

(53)

As H (w1,07) becomes small at certain spatial frequencies, its inverse becomes
large, while the noise W (wy,w;) may not be negligible at these frequencies. This
results in an amplification of the noise, and the restored image is generally
unsatisfactory. Therefore, inverse filtering works well only if the SNR of the

degraded image is high.

One approach to overcoming this difficulty is to preprocess the image
by a noise reduction system before performing inverse filtering [7], as shown in
Figure 51(b). This technique would increase the SNR in order that the deblur-

ring would perform better. One desired property of the noise reduction system

L.
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is that it must have good noise reduction and edge preserving capabilities, in
order not to introduce additional blurring to the image. Based on the results

presented in the last chapter, the 1-D LLSE algorithm is selected.

§22 Experimental Resuits

The BANK’ and 'GIRL’ images shown in Figures 42 and 43 were
blurred by a Gaussian shape point-spread function with standard deviation o
equal to 1 pixel. White Gaussian noise was then added to the blurred image.
Examples of the degraded images at a blurred-signal to noise ratio (BSNR) of
20 dB are shown in Figure 52. Inverse filtering, both with and without the
noise reduction system, was carried out. In implementing the inverse filter, it is
necessary to set H (wy,w) to 2 minimum value if H (w,w;) falls below a cer-
tain level, determined subjectively to give the best visual result. This is to avoid
any singularity or near singularity that H (wy,w;) may have. The results of
inverse filtering without noise reduction are shown in Figures 53(a) and (b).
Although inverse filtering sharpens the image, it also introduces additional
noise to the image. The results of noise reduction before inverse filtering are
shown in Figure 53(c) and (d). Much better improvement in image quality can

be seen. These resulis are consistent with those reported in [7].

§3 Restoration of Images Degraded by Multiplicative Noise
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Figure 52 (a) Figure 44(a) blurred by a Gaussian PSF and
degraded by additive noise at BSNR = 20dB.

(b) Figure 45(a) blurred by a Gaussian PSF and

degraded by additive noise at BSNR = 20dB.
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Figure 53 (a) Figure 52(a) restored by inverse filter.

(b) Figure 52(b) restored by inverse filter.

(c) Figure 52(a) restored ty noise reduction
followed by inverse filter.

(d) Figure 52(b) restored by noise reduction

followed by inverse filter.
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§3.1 Filtering of Speckle Degraded Images in the Deasity Domain

Some physical noise processes are signal-dependent. In many instances,
the signal-dependency may be modeled by a multiplicative process. By taking
logarithm of the image intensity, one can transform the image into the density
domain, and convert the multiplicative noise into an additive one. Thus, filter-
ing techniques, developed for removing additive noise, may be applied in the
density domain, and the result converted back into the intensity domain by

exponentiation.

One particular example that will be crnsidered here is that of speckle
noise in images generated by highly coherent sources, such as laser light. It was
shown [8] that speckle noise may be modeled as a signal-independent multipli-

cative noise. The degraded image can thus be written as
g(ny,n3) = f (ny,n2) w(ny,nz) (54)

where w (n,n;) is a signal-independent white noise sequence whose probability

density function may be modeled by

e v w >0
Pymyn)®) =10 otherwise 55)

In the density domain, Eqn. (5§4) becomes
log[g (n1,n3)] =log[f (ny,n7)] +log[w (ny,n7)] (56)

Several techniques for reducing speckle noise were studied by Lim and
Nawab [8]. The study indicates that if only one frame of the degraded image is
available for processing, the results are rather poor due to the very low SNR of

the image. However, if ¥ frames of the same image degraded by independent

LI
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speckle noise are available, averaging the N frames, followed by a good filter-
L( ing technique in the density domain, produces much better resuits. The overall -
system for restoring speckle noise degraded images by such a scheme is shown
in Figure 54. In 8], the short space spectral subtraction technique was proposed

for the noise reduction system. An alternative that may be used is the 1-D

B

LLSE algorithm. Experimental results of the system using the 1-D LLSE algo-

rithm are shown in the next section.

%S T Ty vy

™

532 Experimental Results

The 'BANK’ and 'GIRL’ images in Figures 43 and 44 were degraded

* according to Eqn. (54) by a noise sequence whose PDF is given by Eqn. (55). o
r Examples of the degraded images are shown in Figures 55(a) and (b). Figures .
i 55(c) and (d) show the results of averaging eight frames of independently
¢ degraded images. These degraded images were restored in the density domain

by the 1-D LLSE algorithm. In implementing this algorithm, the variance of
() log[w (n,,n,)] was taken as -%2— for the single-frame case, and ﬁl- for the N - :
frame case. The results are shown in Figure 56. For the single-frame case, B
E . although the speckle noise is significantly reduced, the quality of the image is
;T. still poor. For the N -frame case, better noise reduction and preservation of l "
L details can be seen.
.4. . -9
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Figure 55

(a) Figure 44(a) degraded by speckle noise modeled by Eqa. (54). 3

(b) Figure 45(a) degraded by speckle noise modeled by Eqn. (54).

(c) Result of averaging 8 frames of independently degraded ’
'BANX’ images.

(d) Result of averaging 8 frames of independently degraded

’GIRL’ images.
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Figure 56 Restoration of figure 55 by the 1-D LLSE algorithm
- in the deasity domain.
(a) Restoration of figure 55(a).
(b) Restoration of figure 55(b).
- (c) Restoration of figure 55(c).
(d) Restoration of figure 55(d).
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5.4 An Application to Noise Reduction in Image Coding

; 5.4.1 A Quantization Noise Reduction Scheme

! One major problem in image coding by pulse code modulation (PCM)

h techniques is the quantization noise that arises from representing the continu- '
.. 4

ous tone of an image by a finite number of intensity levels. If the number of

3 bits per pixel is reduced to less than 4, the ’staircase’ or contouring effect of
B! quantization noise becomes very objectionable. To achieve better image quality
in a low bit rate (e g, 3 bits per pixel) PCM system, Roberts [9] proposed a tech-
nique which transforms the contouring effect into a less objectionable signal-
independent random noise. In his technique, shown in Figure 5.7(a), a pseu-
dorandom noise sequence is added to the image before quantization. The noise

sequence, w (n1,n,), is generated by the probability density function given by

1 A
— wl<—
wls< 2
Pw(u‘,nz)(w) = (57)
0 otherwise '

where A is the quantization level. At the receiver, an exact replica of w (n4,n,)

is subtracted from the image. Although the noise level in the resulting image is

higher, it is more tolerable than the quantization noise.

One way to further improve Roberts’ scheme was proposed by Lim )
(10]. In his system, showna in Figure 57(b), a noise reduction system was cas-
caded to Roberts’ system at the receiver to reduce the amount of the added

random noise. Significant improvement in image quality was reported. In this
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section, the 1-D LLSE algorithm is propcsed for the noise reduction system.

542 Experimental Resuits

The BANK’ and 'GIRL’ images in Figures 43(a) and 44(a) were quan-
tized to 3 bits per pixel, as shown in Figures 58(a) and 59(a). In these pictures,
the contouring effect can be seen quite clearly. Roberts’ method was imple-
mented, and the results are shown in Figures 58(b) and 59(b). Although the
contouring effect is eliminated, the presence of random noise in the images is
quite noticeable. The 1-D LLSE algorithm was then applied to Figures S8(b)

and 59(b). In this algorithm, the noise variance was calculated from Eqn. (57)

2

as % The results, presented in Figures 58(c) and 59(c), show that much of the

random noise is effectively removed while the image resolution is maintained.
The experiments were repeated for a 2-bit PCM system. The corresponding

images are shown in Figures 510 and 511.

Table 51 lists the the normalized mean-square-error (NMSE) achieved
by the two quantization noise reduction schemes in comparison with the stan-
dard PCM system. The NMSE (in %) of an image, say, r (n,n,), with respect to

the original image f (n4,n,), is defined [10] as

22[’1(" 17"2)—f ('l an)lz

By Ry

NMSE =100 62.)
33U (ay,ng)-mg F
nyng
where my is the mean of f (ny,n;), and
r(ny,nz) =a r(nyny) +b (59)
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Figure 58 3-bit PCM BANK’ image.

(a) Standard PCM.
(b) Roberts’ pseudonoise technique.

(c) The improved technique.
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Figure 59 3-bit PCM 'GIRL’ image.

(a) Standard PCM.
(b) Roberts’ pseudonoise technique.

(c) The improved technique.
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Figure 510 2-bit PCM BANK’ image.
- (a) Standard PCM.
(b) Roberts’ pseudonoise technique.
(c) The improved technique.
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Figure 511 2-bit PCM 'GIRL’ image.

(a) Standard PCM.
(b) Roberts’ pseudonoise technique.

(c) The improved technique.
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with a and b chosen such that f (ny,n;) and r’(n,,n;) have the same mean and
variance. As seen in Table 51, the NMSE’s of images processed by Roberts’
method are significantly lowered by the 1-D LLSE nose reduction algorithm.

These results are consistent with the results reported in [10].

Table 51: Quantization noise reduction - normalized mean square error (%)

no. of standard Roberts’ Roberts’
Image bits 2CM pseudonoise | method with
per pixel | coding method 1-D LLSE
BANK 2 8289 10561 3N
BANK 3 219 250 119
GIRL 2 1033 1723 459
GIRL 3 298 335 156

8.5 Coaclusion

Three specific applications of a restoration technique based on the 1-D
approach were shown. In each application, the problem was formulated such
that a part of the overall restoration system made use of the additive noise
reduction scheme. In the first application, the 1-D technique reduced the insta-
bility of inverse filter in a deblurring system. In the second application which
dealt with multiplicative noise, the 1-D technique was shown to be equally
effective in the deasity demain. In the third application, the 1-D technique

impr.ved the Roberts’ quantization noise reduction technique by reducing the
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9.

amount of the added pseudorandom noi:e in the image. These results are simi-
lar to previous results reported in {7 8,10]. These examples illustrate the useful-
ness of the 1-D approach for other restoration problems in addition to those

involving additive ncise, as shown in the last chapter.

e |
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CHAPTER 6
SUMMARY AND CONCLUSION

6.1 Summary

In this thesis, a new 1-D approach to adaptive image restoration is
presented. The objective of this approach is to improve the performance of
the more general 2-D approach for some adaptive image restoration systems
which do not model edges adequately. More specifically, techniques based on
the new approach remove noise more effectively in the edge as well as non-

edge regions, while preserving the resolution of the image.

A brief review of both nonadaptive and adaptive image restoration
were presented in Chapter 2, with specific examples to illustrate their general
principles. Examples were also presented to show the various ways to approxi-
mate the more general 2-D approach by 1-D filters. Such approximations were
used partly because of the difficulty in obtaining a good accurate model of the

edge, and partly to reduce computations.

Based on the review in Chapter 2, the new 1-D approach was presented
in Chapter 3. This approach was motivated by the ability of 1-D filters to
smooth noise close to an edge, and the ability of adaptive filters to preserve
edges. The general form of restoration techniques based on this approach is
shown in Figure 3.1(b), where four 1-D filters are cascaded. Each of the 1-D
filters is designed based on the same principle as the more general 2-D adaptive
restoration principle, but is oriented respectively in the four major correlation

directions of the image, namely, 0, 90, 45, and 135 degrees. The approach was

NTE TR - e —w e
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compared with other 1-D approaches which approximate the 2-D approach.

Examples were presented to demonstrate the effectiveness of the
approach. Specifically, the 1-D LLSE algorithm and the 1-D S-type filter, each

developed respectively from their 2-D counterparts [56], performed better than

the 2-D approaches in their ability to reduce noise and maintain resolution. In
another example, the 1-D spectral subtraction method did not perform better
than the 2-D approach [7], due to the superiority of the latter in modeling
edges. However, the 1-D technique reduced the amount of harmonic patterns

observed in images restored by the 2-D technique.

Techniques based on the 1-D approach may also be used in conjunction - j
with the inverse filter to restore blurred and noisy images. Results presented in
Chapter 5 showed that by performing noise reduction prior to inverse filtering,
the ill-conditioning of inverse filtering could be reduced. Transforming an
image into the density domain enabled the 1-D technique to be used to restore
images degraded by multiplicative noise, such as speckle noise. Since the SNRs
of speckle images were typically very low, it was necessary to average several

independently degraded images before filtering to obtain better results. In

ke s

another application, the 1-D technique improved the Roberts’ pseudonoise tech-
nique for quantization noise reduction. The results obtained in these applica- -
tions are similar to those obtained using the 2-D short space spectral subtrac-

tion technique [78,10].
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6.2 Suggestions for Future Worl: 1

Although the 1-D approach presented in this thesis is based on a simple 0J
and somewhat heuristic principle, the results obtained are very enqouraging. ]
Several refinements and extensions of the present work are suggested in this N W
section. -.

In the 1-D algorithms presented in Chapter 4, it was necessary to
assume that remaining noise after every 1-D filtering is white, in order to sim- 1
plify calculation. This was only an approximation, as each filter not only . ‘ i
reduced the amount of noise, but also introduced spatial correlation to the ]
noise, and correlation between the image and the noise. In some cases, such as P J

p
the LLSE algorithm, it is difficult for the algorithm to incorporate colored
noise. In others, such as the spectral subtraction techmique, colored noise is
allowed, and therefore the approximate noise spectrum may be calculated and . i

incorporated into the algorithm. Although this will increase the amount of cal-

culation, it may result in further performance improvement for the 1-D tech-
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niques. [
The 1-D approach presented is designed for the restoration of an image X
frame by frame. The same approach may be extended to filtering motion pic- _*
tures where, in addition to the horizontal and vertical axes, the temporal axis is " 1
introduced. In this three-dimensional system, the number of 1-D filters would
become 13, instead of 4. J
In the examples presented in this thesis, the techniques based on the ‘.fﬁ

proposed 1-D approach were designed using the same principle as their 2-D

counterparts. There is no reason why the same principles of the existing 2-D 'y
. 1
1

e
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methods have to be used. For example, the LLSE algorithm can be viewed as
an example of a twochannel process as shown in Figure 41. In this process, the
high pass signal is scaled by a particular function of its variance. One
modification of the 1-D LLSE algorithm may be to select some other nonlinear
functions to further improve the edge preserving capability of the 1-D algo-

rithm.

As a further extension, an entirely new restoration algorithm might be
developed based on the general principle of the proposed 1-D approach. The
algorithm would then be implemented as four 1-D filters, each not necessarily
based on any existing restoration principle. The development of each 1-D filter
would be based only on 1-D design techniques, thus avoiding problems that

might be encountered in designing 2-D filters.

6.3 Conclusion

Based on the examples shown in this thesis, we conclude that the 1-D
approach developed in this thesis can improve the performance of the more
general 2-D techniques for some adaptive image restoration systems. Although
this is not a general approach that can be applied to the majority of existing
image restoration schemes, it has potential to be useful in developing new res-

toration techniques.
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